ROUND I: Elementary number theory
ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM

1. What is the largest prime factor of 1995 ?
2. 49_{B} represents a two digit number in base B. If the number 94_{B} is double 49_{B}, find B.
3. The same structure which holds when representing numbers in different bases also works for negative integer bases. Find the base -3 representation for 4710 . (as with base 3 , base -3 only uses the digits 0,1 , and 2.)

ANSWERS
(1 pt) 1.
(2 pts) 2. \qquad
(3 pts) 3.
Auburn, Bartlett, Mass. Academy

ROUND II: Algebra I- open
ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM

1. Solve for k : $\left(3^{4}\right)\left(2^{6}\right)=4\left(6^{k}\right)$
2. There are 20 questions on a math test. The student earns three points for each correct answer and loses one point for each wrong answer or unanswered question. A student with a score of 32 had how many questions correct?
3. Working together, machines A and B can do a job in 9 hours. Machines B and C can do the same job in 12 hours working together. When A, B, and C all work together, the job is completed in 6 hours. How long would it take machine B, working alone, to do the job?

ANSWERS
(1 pt) 1. $k=$
(2 pts) 2. \qquad
(3 pts) 3. \qquad
St. John's, West Boylston, Westboro

ROUND III: Theory of polynomial equations and functions, complex numbers

ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM

1. Evaluate: $i^{97}+i^{98}+i^{99}+i^{100}$
2. Given that $f(x)=x^{2}+3 x+5$ and that p and q are such that $f(p+q)=f(p)+f(q)$, find the value of the product $p q$.
3. If a and b are real numbers and $\frac{1}{a+b i}=\frac{1}{2}-\frac{1}{3} i$, evaluate $\frac{a}{b}$.

ANSWERS
(1 pt) 1. \qquad
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Auburn, Bartlett, St. John's

ROUND IV: Similarity and Pythagorean relationships
ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM OR AS DECIMALS ROUNDED TO FOUR PLACES AFTER THE DECIMAL POINT

1. If $\overline{S L}=\overline{S R}$ and $\overline{R M}=\overline{R L}$, find x.

2.

Similar triangles ABC and DEF are inscribed in circles O and P . If $\overline{O A}=2, \overline{A B}=3$, and $\overline{E D}=5$, find $\overline{E F}$
3. The medians of a right triangle that are drawn from the vertices of the acute angles hare lengths $2 \sqrt{11}$ and 9. Find the length of the hypotenuse.

ANSWERS
(1 pt) 1. \qquad
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Shrewsbury, Tahanto, Tantasqua, Worcester Academy

ROUND V: Trigonometry- open
ALL ANSWERS MUST BE EXPRESSED IN THE FORM SPECIFIED IN THE PROBLEM

1. Find the exact value of $\cos x$ if

$$
3^{\sec x}=9^{\cos x} \quad \text { and } \quad 0 \leq x \leq \frac{\pi}{2}
$$

2. A rhombus of perimeter 40 cm has a 70° angle. Find the length of the longer diagonal to the nearest tenth.
3. If A is an acute angle less than 45°, and $\sin 2 \mathrm{~A}=y$, express $\sin A-\cos A$ in terms of y.

ANSWERS
(1 pt) 1 . \qquad
(2 pts) 2. cm .
(3 pts) 3. \qquad
Auburn, Bancroft, Notre Dame

TEAM ROUND: Topics of previous rounds and open
ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM, NO APPROXIMATIONS, UNLESS OTHERWISE DIRECTED IN THE PROBLEM

2 points each

1. The sport of moshball awards 7 points for a slamdunk and 9 points for a splatter. What is the smallest value of N such that all scores N and greater can be achieved in this sport?
2. Find all real values of x for which $5 x+3 \sqrt{x}=2$
3. Find all values of k which satisfy
i) $f(x)=x^{2}+k$
ii) $g(x)=2 x+k$
and iii) $f(g(\vec{x}))=-4$
4.

If $\frac{a}{b}=\frac{1}{3}$, find $\frac{m}{n}$ as a reduced fraction.
5. Solve for x where $0 \leq x \leq 2 \pi$: $2 \sin ^{2} x+3 \sin x \geq 2$.

Express your answers in terms of integer or fractional multiples of π.
6. Find all the ordered pairs (x, y) for which $\sqrt{x}+\sqrt{y}=17$ and $x-y=85$.
7. Find x as a fraction or mixed number, not a decimal, if

$$
\frac{7 \cdot 7^{\frac{1}{7}}}{7^{7}}=\left(\frac{1}{7}\right)^{x}
$$

8. The operation \oplus is defined as $a \oplus b=a^{2}+3 b$. Find all pairs of positive integers (a, b) such that

$$
a \oplus b=37 .
$$

9. The quotient of two consecutive positive even integers can be written as $K+.01$ where k is an integer. Find the larger of those two consecutive positive integers.

Bartlett, Bromfield, Burncoat, Doherty, Hudson, Mass. Academy, South, Worcester Academy

March 29, 1995
I
1.
2. 14
1.48
3. 12202 の-211)

II 1.4
$2 \quad 13$
$3 \quad 36$

III 1. Oo "zero"
2. $\frac{5}{2}$ on other forms

$$
+\frac{3}{2} \quad n+1.5
$$

5. $\frac{\pi}{6} \leq x \leq \frac{5 \pi}{6}$ no degrees, no decimals
6. $(121,36)$

IV $1 . \quad 9$
2. $\frac{5 \sqrt{7}}{3}$ or 4.4096

3

I

$$
\begin{array}{rl}
\text { 1. } 1 & \frac{\sqrt{2}}{2} 0 \frac{1}{\sqrt{2}} 0 \sqrt{\frac{1}{2}} \eta \sqrt{.5} \\
2 & 16.4 \mathrm{~cm} \\
3 & -\sqrt{1-y} \eta-(1-g)^{\frac{1}{2}}
\end{array}
$$

7. $\frac{41}{7}$ or $5 \frac{6}{7}$
$8 \quad 4$ pains
8. $(1,12),(2,11),(4,7)$,
9. 202
