## WOCOMAL VARSITY MEET

ROUND I: Elementary number theory

ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM

1. What is the largest prime factor of 1995?

2.  $49_{\rm B}$  represents a two digit number in base B. If the number  $94_{\rm B}$  is double  $49_{\rm B}$ , find B.

3. The same structure which holds when representing numbers in different bases also works for negative integer bases.  $\mathbf{F}$ ind the base -3 representation for  $47_{10}$ . (as with base 3, base -3 only uses the digits 0,1, and 2.)

| (1 pt)  | 1         |       |         |
|---------|-----------|-------|---------|
|         |           |       |         |
| (2 pts) | 2         |       |         |
|         |           |       |         |
| (3 pts) | 3         | ····· |         |
| Auburn, | Bartlett, | Mass. | Academy |

ANSWERS



ROUND II: Algebra I- open

ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM

1. Solve for k:  $(3^4)(2^6) = 4(6^k)$ 

2. There are 20 questions on a math test. The student earns three points for each correct answer and loses one point for each wrong answer or unanswered question. A student with a score of 32 had how many questions correct?

3. Working together, machines A and B can do a job in 9 hours. Machines B and C can do the same job in 12 hours working together. When A, B, and C all work together, the job is completed in 6 hours. How long would it take machine B, working alone, to do the job?

| ANSWERS  |      |           |           |          |
|----------|------|-----------|-----------|----------|
| (1 pt)   | 1    | <u>k=</u> |           |          |
| (2 pts)  | 2    |           |           |          |
| (3 pts)  | 3    |           | ]         | hours_   |
| St. John | n's, | West      | Boylston, | Westboro |

WOCOMAL VARSITY MEET

ROUND III: Theory of polynomial equations and functions, complex numbers

ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM

1. Evaluate:  $i^{97} + i^{98} + i^{99} + i^{100}$ 

2. Given that  $f(x) = x^2 + 3x + 5$  and that p and q are such that f(p+q) = f(p) + f(q), find the value of the product pq.

3. If *a* and *b* are real numbers and  $\frac{1}{a+bi} = \frac{1}{2} - \frac{1}{3}i$ , evaluate  $\frac{a}{b}$ .

ANSWERS

- (1 pt) 1.\_\_\_\_\_
- (2 pts) 2.\_\_\_\_\_
- (3 pts) 3.\_\_\_\_\_
- Auburn, Bartlett, St. John's

ROUND IV: Similarity and Pythagorean relationships

ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM OR AS DECIMALS ROUNDED TO FOUR PLACES AFTER THE DECIMAL POINT

1. If  $\overline{SL} = \overline{SR}$  and  $\overline{RM} = \overline{RL}$ , find x.





Similar triangles ABC and DEF are inscribed in circles O and P. If  $\overline{OA} = 2$ ,  $\overline{AB} = 3$ , and  $\overline{ED} = 5$ , find  $\overline{EF}$ 

3. The medians of a right triangle that are drawn from the vertices of the acute angles have lengths  $2\sqrt{11}$  and 9. Find the length of the hypotenuse.

| ANSWERS |   |
|---------|---|
| (1 pt)  | 1 |
| (2 pts) | 2 |

(3 pts) 3.\_\_\_\_\_

Shrewsbury, Tahanto, Tantasqua, Worcester Academy

WOCOMAL VARSITY MEET

ROUND V: Trigonometry- open

ALL ANSWERS MUST BE EXPRESSED IN THE FORM SPECIFIED IN THE PROBLEM

1. Find the exact value of  $\cos x$  if

 $3^{\sec x} = 9^{\cos x}$  and  $0 \le x \le \frac{\pi}{2}$ .

2. A rhombus of perimeter 40cm has a 70° angle. Find the length of the longer diagonal to the nearest tenth.

3. If A is an acute angle less than  $45^{\circ}$ , and  $\sin 2A = y$ , express  $\sin A - \cos A$  in terms of y.

| ANSWERS | 5 |
|---------|---|
|---------|---|

- (1 pt) 1.\_\_\_\_\_
- (2 pts) 2.\_\_\_\_\_ Cm.
- (3 pts) 3.\_\_\_\_\_
- Auburn, Bancroft, Notre Dame

TEAM ROUND: Topics of previous rounds and open

ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM, NO APPROXIMATIONS, UNLESS OTHERWISE DIRECTED IN THE PROBLEM

2 points each

- 1. The sport of moshball awards 7 points for a slamdunk and 9 points for a splatter. What is the smallest value of N such that all scores N and greater can be achieved in this sport?
- 2. Find all real values of x for which  $5x + 3\sqrt{x} = 2$
- 3. Find all values of k which satisfy

i) 
$$f(x) = x^2 + k$$
  
ii)  $g(x) = 2x + k$   
and iii)  $f(g(\mathfrak{X})) = -4$   
4. If  $\frac{a}{b} = \frac{1}{3}$ , find  $\frac{m}{n}$  as a reduced fraction.

- 5. Solve for x where  $0 \le x \le 2\pi$ :  $2\sin^2 x + 3\sin x \ge 2$ . Express your answers in terms of integer or fractional multiples of  $\pi$ .
- 6. Find all the ordered pairs (x,y) for which  $\sqrt{x} + \sqrt{y} = 17$  and x y = 85.
- 7. Find x as a fraction or mixed number, not a decimal, if

$$\frac{7 \bullet 7^{\overline{7}}}{7^7} = \left(\frac{1}{7}\right)^x$$

8. The operation  $\oplus$  is defined as  $a \oplus b = a^2 + 3b$ . Find all pairs of positive integers (a,b) such that

 $a \oplus b = 37$ .

9. The quotient of two consecutive positive even integers can be written as K+.01 where k is an integer. Find the larger of those two consecutive positive integers.

The A STREET I **1.** (p) 19 1. 48 2. de pres 14 3. 12202 **n -2111** 2. 4 or 0.16 3, -5 and -8 Ц A THE I 1. 13 2  $4. \frac{1}{9}$ 36 3 O on "zero" 1.  $5. \frac{\pi}{2} \leq \chi \leq \frac{5\pi}{2}$ 2. The 5 on other forms no degrees, no decimalo  $+\frac{3}{2}$  or +1.56. (121, 36) T 9 1. 7. <u>41</u> or 5<u>6</u> no decemals 5 JT on 4.4096 2. 10 3 4 pars 8. (1,12), (2,11), (4,7), 50 - 0 1/2 0 1.5 I 1. 1 (5, 4)16.4 cm 9. 202 2 - JI-4 07 - (1-4) à 3